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    In this research, we study some properties of compactons using Finite Element Method (FEM). This 6 

method is complicated for programming and very time consuming; but it is an accurate method. Using 7 

this method, we studied soliton properties and obtained results were acceptable. Then we studied 8 

compactons; Compactons are solitons with finite width or on the other hand solitons with no tail. This 9 

defined property for compactons was not observed in our simulation after a long period of time. It seems 10 

that breaking of compacton occurred regarding the entity of compacton equations, not by numerical error. 11 

In compactons collision, particle-like manner was not observed at all during this research. Perhaps it is 12 

due to suddenly vanishing of compactons on both ends. 13 

 14 

Introduction 15 

    Solitary waves were observed in 1834 for the first time. These waves have 16 

constant shape across time. It happens because of the balanced simultaneous effect 17 

of nonlinear and dispersive terms. Nonlinear term reduces the width of the wave 18 

shape and dispersive term makes it wide. Soliton is a solitary wave. One of the 19 

equations which have soliton solution is KdV equation. KdV is a special case of 20 

general partial differential equation k(m, n) [1], 21 

�� + (��)� + (��)��� = 0         , 
 > 0 ,   1 < � ≤ 3                                         (1) 22 

    This equation have compacton solutions for special values of 
 and �, e. g. 23 
 = � = 2  or 
 = � = 3. Compactons, by definition, have some characteristic 24 

properties of solitons such as particle-like elastic collision [2]. The shape of these 25 

waves remains unchanged after collision. Compctons have some basic differences 26 

with solitons too, such as  27 

1- Compactons, unlike solitons, have finite width [2]. 28 

2- Traveling velocity of compactons, unlike solitons, is independent of width 29 

[2]. 30 



 

    Due to suddenly vanishing shape of compactons on both ends, numerical study 31 

of these equations is difficult. Some numerical methods have been used for solving 32 

k(m, n) before, e. g. Pseudo Spectral Method [1], Discontinuous Galerkin Method 33 

[3,4] and Finite Difference Method  [5]. It seems that some published results have 34 

been the authors’ expectations, not real numerical solution! This paper has been 35 

extracted from more than hundreds hours simulation of k (m, n) equation with 36 

Finite Element Method by MATLAB. This method is very complicated for 37 

programming and simulation.  38 

 39 

Solitons 40 

    Some solutions of nonlinear KdV equations are solitons. KdV equation has been 41 

written as:  42 

�� − 6��� + ���� = 0                                                                                         (2) 43 

� and � indices are time and space derivatives respectively. Balanced effect of 44 

nonlinear term ��� and dispersive term ���� , cause initial wave shape to remain 45 

unchanged. Solution of KdV equation is a traveling wave with general form 46 �(�, �) = �(� − ��) and � is a constant showing wave velocity. Soliton solution of 47 

KdV equation is  48 

�(�, �) = − �� �. ���ℎ�(� − ��)                                                                               (3) 49 

 50 

 51 

Figure 1. Soliton solution of KdV equation 52 



 

 53 

Compactons 54 

    k(m, n) equations were introduced for studying  the role of dispersion in the 55 

waves. General form of these equations is very similar to KdV  56 

�� + (��)� + (��)��� = 0         , 
 > 0 , 1 < � ≤ 3                                           (4)  57 

and �, � indices are time and space derivatives respectively. As a special case, k(m, 58 

n) equation for 
 = 2 and � = 1 is KdV equation. Characteristic property of 59 

solution of these equations is completely particle-like elastic collision. Unlike 60 

solitary waves with infinite width, these solutions have finite widths or on the other 61 

hand they have no tail [2]; so, they are compact and called compacton. In some 62 

articles, these equations were investigated for special values of 
 and �, and 63 

compacton solution was extracted, e. g. for 
 = � = 2 and 
 = � = 3.  64 

k(2, 2) equation is written as  65 

�� + (��)� + (��)��� = 0                                                                                     (5) 66 

and have closed form solution  67 

�!(�, �) = " #!$ �%�� &�'!�# (,             |� − ��| ≤ 2*  0 ,                                           %�ℎ�+,-��   .                                           (6) 68 

 69 

 70 

Figure 2. k(2, 2) solution 71 



 

k(2, 2) solution is invariant under /� → −�� → −� . ; so, under this transformation it 72 

indicates  an anti-compacton, traveling in opposite direction [1]. k(3, 3) equation is 73 

written as  74 

�� + (�$)� + (�$)��� = 0                                                                                   (7) 75 

and has closed form solution [1] 76 

�!(�, �) = 1±3$!� �%� &�'!�$ (,             |� − ��| ≤ $4�  0 ,                                           %�ℎ�+,-��   .                                           (8) 77 

 78 

Figure 3. k(3, 3) solution 79 

Finite Element Method 80 

    Finite Element Method is a powerful and precise method but it is difficult and 81 

time consuming method for solving wide range of ordinary and partial differential 82 

equations. It works for both initial and specially boundary value problems. In this 83 

method we divide space of problem into subspaces with the same sizes or, in most 84 

cases, different sizes. Then in each subspace, the solution of differential equation is 85 

approximated by the series of some arbitrary basic functions with unknown 86 

coefficients. We should try to find these unknown coefficients and consequently 87 

the solution. Compactons were studied by different methods such as Implicit Finite 88 

Difference Method, Explicit Finite Difference Method, etc. These methods are 89 

neither reliable nor stable for compacton equations. Smaller sizes of steps do not 90 

have desirable effect on stability of solution. In implicit method, a forth order term 91 



 

is added to the equation as an absorber. But in Finite Element Method, the 92 

solutions are more reliable and more similar to closed form solution. 93 

Conclusion  94 

In one part of our research, we simulate the KdV equation. It obtained soliton 95 

travelling with constant shape (Figure 4), collision, and then separation (Figure 5). 96 

 97 

Figure 4: Soliton moves without change in shape 98 

 99 

Figure 5: Collision of two solitons and separation 100 

    We saw that if we solve KdV equation with arbitrary initial wave shape, some 101 

perturbations leave the shape and soliton solution is appeared and travel without 102 

change (Figure 6). For comparing between extracted soliton from arbitrary initial 103 

shape and closed form solution of KdV, we insert equation (1) by dots in figure (6) 104 

at related time. 105 



 

 106 

Figure 6: Some perturbations leave initial arbitrary shape (blue) and the soliton moves without change in 107 

shape (red shape in right), dots on right valley show the soliton shape coincidence.  108 

 109 

But for the compactons, even with closed form solution of k(2, 2) and k(3, 3) as 110 

initial wave shapes, in the time evolution of related equation, some perturbations 111 

appear and then blow up. We investigated k(2, 2) and k(3, 3) by Finite Element 112 

Method with a wide variety of basic functions, space step sizes and time step sizes. 113 

This happens even with reducing space and time step sizes for long time simulation 114 

for all basic functions (Figure 7,8).  115 

 116 

Figure 7: Movement of k(2, 2) compacton before crashing 117 



 

 118 

Figure 8: Movement of k(3, 3) compacton before crashing 119 

    Not only in Finite Element Method, but also for all frequently used numerical 120 

methods, the compacton has not time evolution and particle-like collision. Perhaps, 121 

main role in divergence is caused by suddenly vanishing of the compactons on 122 

both ends. This event causes discontinuity in derivatives. Is it true that the main 123 

part or all of divergence is caused by numerical method? We should answer to this 124 

question carefully. All of numerical methods have some round off or truncation 125 

errors. But it is accepted that numerical methods are applicable, specifically for the 126 

problems with no analytic or closed form solution. One of the most accurate 127 

numerical methods is Finite Element Method and we obtained some acceptable 128 

results for solitons by this method. So, perhaps some of properties that enumerated 129 

for compactons are unreal. Can we confine a wave in this limit and relate particle 130 

like manner to it?  131 

 132 
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